Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Taibah Univ Med Sci ; 18(3): 600-638, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2159368

ABSTRACT

Unlike pandemics in the past, the outbreak of coronavirus disease 2019 (COVID-19), which rapidly spread worldwide, was met with a different approach to control and measures implemented across affected countries. The lack of understanding of the fundamental nature of the outbreak continues to make COVID-19 challenging to manage for both healthcare practitioners and the scientific community. Challenges to vaccine development and evaluation, current therapeutic options, convalescent plasma therapy, herd immunity, and the emergence of reinfection and new variants remain the major obstacles to combating COVID-19. This review discusses these challenges in the management of COVID-19 at length and highlights the mechanisms needed to provide better understanding of this pandemic.

2.
Eur J Pharmacol ; 896: 173930, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1139488

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 , Nanomedicine/methods , SARS-CoV-2/drug effects , Viral Vaccines/pharmacology , COVID-19/epidemiology , COVID-19/prevention & control , Drug Development , Humans
SELECTION OF CITATIONS
SEARCH DETAIL